Goodstudents.ru

 

 

 

 

 

Задачи по статистике с решениями и выводами Примеры решений задач по статистике
Примеры решений задач по статистике



Примеры решений задач по статистике

Решение задач по статистике. Примеры

Задача по статистике с решением №1. Найти параметры интервального ряда распределения по данным таблицы, а именно: моду, медиану, среднюю арифметическую величину, среднюю взвешенную величину, коэффициент вариации, среднее квадратическое отклонение.

№ группы

Группы компаний по основным производственным фондам, млн. руб. (х)

Число компаний (fi)

Середина интервала (Xi) = (начало интервала+конец интервала)/2

1

10 - 25

2

17,5

2

25 - 33

8

29

3

33 - 42

14

37,5

4

42 - 49

9

45,5

5

49 - 62

3

55,5

Всего:

36

Мы сразу добавили столбец «середина интервала». Для первой группы компаний рассчитали следующим образом: (10+25)/2=17,5 млн. руб. Для 2-5 групп расчеты произведены аналогично.

Теперь рассчитаем среднюю арифметическую величину.

средняя арифметическая = = (17,5+29+37,5+45,5+55,5)/5=37 млн. руб.

Далее рассчитаем среднюю взвешенную величину.

средняя взвешенная = = (17,5*2+29*8+37,5*14+45,5*9+55,5*3)/36=38 млн. руб.

Значение средневзвешенной величины можно считать более корректным, чем значение средней арифметической величины, поэтому далее в расчетах будем использовать среднюю взвешенную.

Теперь добавим в таблицу столбцы, данные которых нам понадобятся для расчета дисперсии.

Число компаний (f)

Середина интервала (Xi) = (начало интервала+конец интервала)/2

Xi*fi

2

17,5

35

-20,5

420,25

840,5

8

29

232

-9

81

648

14

37,5

525

-0,5

0,25

3,5

9

45,5

409,5

7,5

56,25

506,25

3

55,5

166,5

17,5

306,25

918,75

Итого: 36

1368

2917

Рассчитаем дисперсию.

=2917/36=81,03. (дисперсия не имеет размерности)


Среднеквадратическое отклонение рассчитывается как корень квадратный из дисперсии.

=9 (млн. руб.).

 

Рассчитаем коэффициент вариации по формуле:

=(9/38)*100%=23,68%.

 

Рассчитаем моду и медиану.

Найдем моду по формуле.

 

Модальный интервал находим по наибольшей частоте. Наибольшая частота, т.е. частота модального интервала fМо=14. Модальный интервал от 33 до 42 млн. руб. Значит величина модального интервала i = 42-33=9.

Нижняя граница модального интервала равна 33.

Частота предмодального интервала равна 8.

Частота постмодального интервала равна 9.

Мода будет равна = 33 + 9*((14-8)/(14-8+14-9))=37,9 млн. руб.

Найдем медиану по формуле.

 

Медианный интервал находим по накопленной частоте. Суммируются f частоты, пока не достигается значение, превышающее середину совокупности (36/2=18 млн. руб.).

Группы компаний по основным производственным фондам, млн. руб. (х)

Число компаний (f)

Накопленная частота S

10 - 25

2

2

25 - 33

8

10

33 - 42

14

24

42 - 49

9

33

49 - 62

3

36

Таким образом, медианный интервал от 33 до 42 млн. руб. Значит величина медианного интервала i = 42-33=9.

Частота медианного интервала fМе=14.

Нижняя граница медианного интервала равна 33.

Накопленная частота предмедианного интервала равна 10.

Медиана будет равна = 33 + 9*((36/2-10)/(14))=38,14 млн. руб.

Пример решений задач по статистике №2 (индексы).

Решаем задачи по статистике - Задача №3 (выборка).

Задача по статистике с решением №4 (группировка).

Решение задачи по статистике №5 (расчет средних величин).

Задача по статистике и решение №6 (корреляция, корреляционный анализ).

Контрольные работы и курсовые работы по статистике на другие темы, а также примеры решений задач по статистике (общей теории статистике и экономической статистике) представлены на вкладке сайта.






 






Рейтинг@Mail.ru

Goodstudents Goodstudents



Все права на материалы сайта принадлежат авторам. Копирование (полное или частичное) любых материалов сайта возможно только при указании ссылки на источник (администратор сайта).